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Abstract
The results of a quantitative study of the renormalization of the binding energy
of the Wannier–Mott exciton by the isotope effect are presented for the first
time. For this purpose, accurate measurements of the intrinsic luminescence
and mirror reflection spectra of LiHx D1−x mixed crystals with a clean surface
in the temperature range 2–100 K were carried out. The nonlinear dependence
of exciton binding energy Eb on the isotope mass Eb ∼ f (x) is caused by
the fluctuation broadening of the bands, which is connected with the isotope-
induced disorder. The temperature dependence of the exciton binding energy
is briefly discussed. The extrapolation of the asymptotic linear behaviour of
the exciton maximum energy to T = 0 K enables us to estimate the zero-point
renormalization of the exciton binding energy.

A wide variety of novel isotope effects have been discovered in the last four decades [1–6]
owing to the availability of high-quality bulk semiconductor and insulator crystals with
controlled isotopic composition (see, also, reviews [7–10]). Recent high-resolution
spectroscopic studies of excitonic and impurity transitions in high-quality samples of
isotopically enriched Si have discovered the broadening of bound exciton emission (absorption)
lines connected with isotope-induced disorder as well as the dependence of their binding energy
on the isotope mass [11–13]. The last effect was early observed on the bound excitons in
diamond [14, 15], and earlier on the free excitons in LiHx D1−x mixed crystals [16].

As is well known (see, for example [16, 17, 4]) the band gap energy Eg in the T −→ 0 limit
has a dependence on the average isotopic mass M due to two effects: (a) the renormalization
of Eg by the electron–phonon interaction coupled with the dependence of the zero-point
amplitudes on M (see also [18]); and (b) the dependence of the lattice constant on M , leading
to a change in Eg through the hydrostatic deformation potential. The electron–phonon term is
dominant [19, 20] and in the case of semiconductor crystals (C; Ge; Si) with a weak isotope

scattering potential it varies approximately as M
−1/2

. The value of the T = 0 electron–
phonon renormalization energy contribution to Eg can be independently determined from an
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extrapolation of the high-temperature linear dependence of Eg ∼ f (T ) to T = 0, but again
it should be remembered that Eg ∼ f (T ) also has a small contribution from the change in
volume with temperature. Therefore we should distinguish between the effects of the average
atomic mass (which imply the virtual crystal approximation—VCA) and the effects of the mass
fluctuations (randomness) superimposed onto the virtual crystal.

In this communication we report the first results of a quantitative study of the dependence
of the free exciton binding energy on isotope mass as well as on the temperature in LiHx D1−x

mixed crystals. We will show that the exciton binding energy increases by 10 ± 1 meV from
7LiH to 7LiD. Moreover, the dependence of Eb ∼ f (x) is nonlinear. The last effect, as will be
shown below, is caused by the isotope-induced disorder of LiHx D1−x mixed crystals. Part of
these results has been published in brief in [21].

Specimens of LiH, LiD, LiHx D1−x (0 � x � 1) and LiHx F1−x were grown from the melt
using the modified Bridgman–Stockbarger method (see also [22]). This technique has been
described many times previously (see, e.g. [18, 2]). To improve the stoichiometric composition
with respect to hydrogen (deuterium), the crystals grown were additionally annealed in an
atmosphere of hydrogen or deuterium at a gas pressure of 3–5 atm, and a temperature of 500–
550 ◦C (the melting point is 961 and 964 K for LiH and LiD, respectively). For some crystals
the time of heat treatment was as long as 20 days (for more details see [2, 7]).

Given the high reactivity of freshly cleaved LiH crystals in the atmosphere, we had to
develop a procedure of cleaving which would not only ensure an initially clean surface, but
also allow us to keep it fresh for a few hours (the time taken to complete an experiment).
These requirements are satisfied by the well-known method of cleaving directly in the helium
chamber of an optical cryostat under liquid or superfluid helium, first tried in [23]. We did not
notice any changes in the reflection or luminescence spectra while working for 10–16 h with
surfaces prepared in this way. The device for cleaving the crystals had three degrees of freedom
and rotated through 90◦, which greatly helped in carrying out the experiments. As a rule,
specimens for experiments were cleaved off bulk high-quality crystals. The experimental setup
for measuring the low-temperature reflection and luminescence spectra has been described
more than once (see, e.g. [7, 18]) and consists of a double grating or prism monochromators,
an immersion helium cryostat, and a photovoltaic detector (in photon-counting mode). The
results presented in this paper were obtained from a clean crystal surface cleaved, as described
above, directly in the bath of the helium cryostat. The mirror reflection spectra were measured
using an angle of incidence of 45◦. For our studies we selected specimens which exhibited low
dependence of exciton spectra of reflection and luminescence on surface features.

As demonstrated earlier (see, e.g. [7]) most low-energy electron excitations in LiH (LiD)
crystals are large-radius excitons. The spectrum of exciton photoluminescence of LiH crystals
cleaved in liquid helium consists of a narrow (in the best crystals, its half-width is �E �
10 meV) phononless emission line and its broader phonon repetitions, which arise due to
radiative annihilation of excitons with the production of one to five longitudinal (LO) phonons
(see figure 1). The phononless emission line coincides in an almost resonant way with the
reflection line (see the inset in figure 1) of the exciton ground state which is another indication
of a direct electron transition (X1–X4 [2]). The lines of phonon replicas form an equidistant
series biased toward lower energies from the resonance emission line of excitons. The energy
difference between these lines is about 140 meV, which is close to the calculated energy of
the LO phonon in the middle of the Brillouin zone [24] and which was measured in [19]. The
isotopic shift of the zero-phonon emission line of LiH crystals equals that in reflection spectra,
103 meV (see, also, the inset in figure 1). As the deuterium concentration increases, the width
of the long-wave maximum in the reflection spectra (and the width of the phononless line in the
luminescence spectra) broadens, and the maximum shifts towards shorter wavelengths. As can
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Figure 1. Luminescence spectra of free excitons at 2 K in LiH and LiD crystals cleaved in liquid
helium. In the inset: mirror reflection spectra of crystals. Curve 1: LiH; curve 2: LiHx D1−x and
curve 3: LiD. Curve 4 is the light source without crystals.

clearly be seen in figure 1, all spectra exhibit a similar long-wave structure. This circumstance
allows us to attribute this structure to the excitation of the ground (1s) and the first excited (2s)
exciton states [2]. Three distinct effects are shown in the reflection spectra by an increase in
deuterium concentration:

(1) the short-wavelength shift of the reflection (as luminescence) spectrum as a whole;
(2) the different velocity shift of the exciton maximum of the ground and the first excited states

on the temperature (see figure 2);
(3) broadening of the long-wavelength maximum due to excitation of the ground exciton state.

We should note that the first excited exciton state is very clearly seen in the luminescence
spectra too (see figure 3). Although two distinct contributions to �Eg (and respectively Eb)
are present, due to the effect of the vibration on the lattice constant and the direct effect of the
electron–phonon interaction [19, 20], for the present study of the dependence of the exciton
binding energy on the isotope mass only the mechanism of exciton–phonon interaction will be
considered.

In accordance with the second effect in reflection spectra (see above point 2), as is to be
expected, there is a nonlinear dependence of the exciton binding energy (Eb = 4/3�12) on
the isotope concentration. The curve displayed in figure 4 shows the Wannier–Mott exciton
binding energy values, which are determined from the hydrogen-like expression Eb = e4μ

2�2ε2n2
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Figure 2. Temperature dependence of the distance between the long-wavelength peaks (�12) in
specular reflection spectra of pure and mixed crystals. 1: LiH; 2: LiD; 3: LiD0.995F0.005.

Figure 3. The reflection (1) and luminescence (2) spectra of LiD crystal at 2 K.

using for this E1 and E2 values from the reflection and luminescence spectra (see figures 1
and 3). The nonlinear nature of this dependence is similar to the theoretical results [25], where
the influence of the chemical disorder of the crystal lattice on the Wannier–Mott exciton binding
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Figure 4. Concentration dependence of the binding energy of a Wannier–Mott exciton at 2 K in
LiHx D1−x mixed crystals. 1: VCA approximation model; 2: calculation according to equation (8);
experimental points are indicated by triangles.

energy was seen and a qualitative (not quantitative!) agreement with experimental results on
GaAsx P1−x [26] mixed crystals obtained.

Before the comparison of our experimental results with the theory developed by Elliott
and Kanehisa [25], it would be prudent to briefly review the main properties of their theoretical
model. One of the principal results of [25] is the nonlinear dependence of the exciton
binding energy Eb on the concentration. As a consequence, the binding energy at half-and-
half concentrations is less than the value derived from the crystal virtual model. According
to [25] this model considers an exciton with a direct gap of a semiconductor alloy. Such a
system consists of an electron (particle 1) in the conduction band (c) with mass mc and a hole
(particle 2) in the valence band (v) with mass mv. The problem of the exciton in disordered
systems is to solve the Hamiltonian

H = �p2/2mc + �p2/2mv + u(�r1 − �r2) + Vc(�r1) + Vv(�r2), (1)

with both the Coulomb interaction u and the potential Vv due to disorder (ν = c, v).
Reference [25] neglected disorder-induced interband mixing. As is well known, in place of
the electron–hole coordinates, (�r1, �p1) and (�r2, �p2), one may introduce the centre-of-mass and
relative coordinates, ( �R, �P) and (�r , �p) to rewrite (1) as

H = �p2/2μr + u(�r) + �P2/2M + Vc( �R + mv�r/M) + Vv( �R − mc�r/M), (2)

where μr and M are the reduced and total masses of excitons, respectively. Because of the
random potential, the translational and relative degrees of freedom cannot be decoupled. This
is essentially difficult when considering the two-body problem in a disordered system (see [25]
and references therein). However, when the exciton state in question is well separated from
other states, so the energy spacing is much larger than the translational width and disorder,
one can forget about the relative motion (Hr = �p2

2mr
+ u(�r)) and just apply any single-particle

alloy theory solely to their translational motion. For each exciton state the translational part of
Hamiltonian in this case is

Ht = �P2/2M + V̄c( �R) + V̄v(R̄). (3)
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Here V̄c and V̄v are averages of Vc and Vv with respect to the relative state φ, for example:

Vc( �R) =
∫

d3�r |φ(�r)|2Vc

[
�R + mv

M
�r
]
. (4)

This approach is very similar to the Born–Oppenheimer adiabatic approximation. Such
situations hold in some mixed alkali halide crystals and probably A2B6 crystals. In
contrast, when the exciton binding energy is comparable to the disorder energy, the adiabatic
approximation breaks down, and it is essential to take into account the effect of disorder on
both the translational and relative motions. This is the case with the Wannier–Mott exciton in
A3B5 alloys, for which the Elliott and Kanehisa model was developed. In this case the solution
task is to start from the independent electron and hole by neglecting u in (2) and then to take
into consideration the Coulomb interaction between the average electron and average hole.
A further simplified approach adopted in the literature (see, for example, [27] and references
therein) in solving the Bethe–Salpeter equation [28] is to suppose a free-electron-like one-
particle Green’s function with a built-in width to allow for the random potential due to disorder.
In the cited theoretical model [25], the average (or ‘virtual crystal’) gap is given by

Evc
g (x) = E0 + (δc − δv)(x − 1/2), (5)

where E0 is the average gap, and δc and δv are the values of the fluctuation broadening of the
conduction and valence bands, respectively. Reference [25] also assumed the Hubbard density
of states for both the conduction and valence bands with width Wc and Wv, respectively, as well
as similar dispersion in both bands. With this assumption the exciton binding energy has been
calculated according to the coherent potential approximation CPA model. As is well known,
the main idea of the coherent potential methods is in the introduction of an auxiliary medium
with a regular, i.e., spatially periodic, potential. By definition in the model this potential
is also complex. The formalism of the coherent potential model, convenient for performing
calculation, does not include fitting parameters, because of use of the density of phonon states
from the virtual crystal model which used the virtual crystal approximation (VCA). It should
be added here that the key feature of the model developed in [25] is the short-range nature of
the Coulomb potential (for details, see e.g. [7, 29]).

The data from figure 1 and other published sources [2, 7, 21] were used for plotting the
energy Eb as a function of isotopic concentration x in figure 4. The binding energy (defined as
the band edge minus the exciton energy) is given by [25]

Ecrys
b = U0 + W

2U0
+ W. (6)

In the last relation U0 is the coupling constant at the total exciton momentum �q = 0.
The theoretical description of the binding energy of Wannier–Mott excitons as a function

of concentration x was based on the polynomial derived by Elliott and co-workers [25]:

Eb = Ecrys
b − Ebow

[
1 − W

2U0

]
− Eeff, (7)

Eeff = x(1 − x)
δcδv

W
, (8)

where W = Wc + Wv, and Wc and Wv are the widths of the conduction band and the
valence band, which are equal to 21 eV [30] and 6 eV [31, 32] respectively. Here Ebow is
the curvature parameter found from the function Eg ∝ f (x) (Ebow = 0.046 eV [7]); δc and
δv are the magnitudes of the fluctuation smearing of the valence band and the conduction band
edges, δc = 0.103 eV and δv = −0.331 eV. As follows from figure 4, these values of the
parameters give a good enough description of the nonlinear dependence of the binding energy
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Figure 5. Concentration dependence of the half-width of the ground-state line of the exciton in
the mirror reflection spectrum at 2 K. 1: VCA approximation model; 2: calculation according to
equation (9); experimental points are indicated by crosses.

of the Wannier–Mott exciton in disordered medium isotope-mixed crystals LiHx D1−x . This
agreement between theory and experiment once again proves the inherent consistency of the
model proposed by Kanehisa and Elliott, since the isotopic substitution affects the short-range
part of the interaction potential.

In this way, the nonlinear dependence of the binding energy of the Wannier–Mott exciton
is caused by isotopic disordering of the crystal lattice. As is seen from figure 4, the exciton
binding energy decrease (relative linear law (VCA)—see the dashed line in figure 4) in the
vicinity of the middle meaning concentration really draws attention to the fluctuated broadening
of the edge of the conduction and valence bands. In accordance with the theoretical model, the
last reason gives rise to the reduced Eg and thereby the thinning of the exciton levels and,
respectively, the reduction of Eb.

As follows from figure 1, the addition of deuterium leads not only to the short-wave
shift of the entire exciton structure (with different rates for 1s and 2s states), but also to a
significant broadening of the long-wave exciton reflection line. This line is broadened 1.5–
3-fold upon transition from pure LiH to pure LiD. The measure of broadening was the half-
width of the line measured in the standard way (see e.g. [33]) as the distance between the
maximum and the minimum in the dispersion gap of the reflection spectrum, taken at half-
height. The concentration dependence of the half-width (�E R) of the long-wave band in
the exciton reflection spectrum at 2 K is shown in figure 5. Despite the large spread and
the very limited number of concentrations used, one immediately recognizes the nonlinear
growth of �E R with decreasing x . A similar concentration dependence of �E R in the low-
temperature reflection spectra of solid solutions of semiconductor compounds A2B6 and A3B5

has been reported more than once (see e.g. the review of Elliott and Ipatova [34] and references
therein). The observed broadening of exciton lines is caused by the interaction of excitons
with the potential of large-scale fluctuations in the composition of the solid solution. Efros and
colleagues (see e.g. [35]) used the Lifshitz method of optimal fluctuation [36] to express the
formula for the concentration dependence of the broadening of exciton reflection lines:

�E R = 0.5α

[
x(1 − x)

Nrex

]1/2

(9)
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where N is the concentration of sublattices nodes where the isotope substitutes are placed;
α = dEg/dx ; and rex is the exciton radius which varies from 47 to 42 Å upon transition from
LiH to LiD [2]. The results of calculation according to equation (9) are shown in figure 5 by a
full curve.

The experimental results lie much closer to this curve than to the straight line plotted from
the virtual crystal model. At the same time it is clear that there is only qualitative agreement
between theory and experiment at x > 0.5. Nevertheless, even this qualitative analysis clearly
points to the nonlinear dependence of broadening on the concentration of isotopes, and hence
to the isotopic disordering. Since isotopic substitution only affects the energy of the optical
phonon for the first time, and, as a consequence, the constant of exciton–phonon interaction
(in the first place, the Fröhlich interaction g2

F), the nonlinearity of functions �Eb ∝ f (x),
�E R ∝ f (x) is mainly related to the nonlinear behaviour of g2

F ∝ f (x). In this way, the
experimental study of the concentration dependence of the exciton–phonon interaction constant
may throw light on the nature and mechanism of the large-scale fluctuations of the electron
potential in isotopically disordered crystals.

Returning to the results of figure 2, let us add that the different temperature dependence of
exciton peaks of the 1s and 2s exciton states leads to the temperature dependence of the binding
energies of Wannier–Mott excitons

Eb ∼ f (T ). (10)

This problem has not received any adequate treatment. More specifically, the energy of
the exciton binding Eb in LiH crystals (as well as in mixed crystals LiHx F1−x (LiDx F1−x ))
decreases with increasing temperature, whereas Eb increases for excitons of the green and
yellow series in Cu2O crystals [37]. A linear approximation of the exciton binding energy in
LiD0.995F0.005 (see curve 3, figure 2) representing Eb at T = 0 K gives Eb(0) ∼= 55 meV. From
this value we can see that renormalization of the binding energy by the zero-point vibrations
equals approximately �10% from this value; that is, on the other hand, it composes only half
of renormalized exciton binding energy by the isotope effect (�10 meV, see above). It is not
excluded that the other part of the renormalized exciton binding energy is caused by exciton–
polar phonon interaction.

In conclusion, the exciton luminescence and reflection spectra are used in a quantitative
study of the isotopic and temperature effects in LiHx D1−x mixed crystals with a clean surface.
It was shown that the short-range character of the potential of a disordered crystal lattice with
isotope substitution is responsible for the broadening of the valence and conduction bands.
Nonlinear dependence of the exciton binding energy on the isotope mass Eb ∼ f (x) is due
the isotope-induced disorder of LiHx D1−x mixed crystals. The temperature dependence of the
exciton binding energy has been briefly discussed. The extrapolation of the asymptotic linear
behaviour of the exciton maximum energy to T = 0 K enables one to estimate the zero-point
renormalization of the exciton binding energy. Thus we can see that the effects of the zero-
point vibration (T = 0 K) are by no means negligible, and they result in the dependence of the
exciton binding energy (bandgap Eg) on isotope mass at low temperature.
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